Научная Петербургская Академия

Реферат: Источники электроэнергии

Реферат: Источники электроэнергии

Источники Энергии.

ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ (ТЭС), электростанция,

вырабатываю­щая электрическую энергию в результате пре­образования тепловой

энергии, выделяю­щейся при сжигании органического топлива. Первые ТЭС появились

в кон. 19 в (в 1882 — в Нью-Йорке, 1883 — в Петер­бурге, 1884 — в Берлине) и

получили преимущественное распространение. В сер. 70-х гг. 20 в. ТЭС —

основной вид элек­трической станций. Доля вырабатываемой ими электроэнергии

составляла: в СССР и США св. 80% (1975), в мире около 76% (1973).

Среди ТЭС преобладают тепловые паротурбинные электростанции (ТПЭС), на

которых тепловая энергия исполь­зуется в парогенераторе для получения

водяного пара высокого давления, приводящего во вра­щение ротор паровой

турбины, соединён­ный с ротором электрического генерато­ра (обычно

синхронного генератора). В СССР на ТПЭС производится (1975) ~99%

электроэнергии, вырабатываемой ТЭС. В качестве топлива на таких ТЭС используют

уголь (преимущественно), мазут, природный газ, лигнит, торф, сланцы. Их кпд

достигает 40%, мощ­ность -3 Гвт; в СССР создаются ТПЭС полной проектной

мощностью до 5-6 Гвт.

ТПЭС, имеющие в качестве привода электрогенераторов конденсационные тур­бины

и не использующие тепло отра­ботавшего пара для снабжения тепловой энергией

внешних потребителей, называют конденсационными электростанциями

(официальное назв. в СССР — Государственная рай­онная электрическая станция, или

ГРЭС). На ГРЭС вырабатывается около 2/3 электро­энергии, производимой на

ТЭС. ТПЭС оснащенные теплофикационными турби­нами и отдающие тепло

отработавшего пара промышленным или коммунально-бытовым потребителям, называют

теплоэлектроцент­ралями (ТЭЦ); ими вырабатывается около

1/3 электроэнергии, производимой на ТЭС.

ТЭС с приводом электрогенератора от газовой турбины называют

газотурбинными электростанциями (ГТЭС). В камере сгорания ГТЭС сжигают газ

или жидкое топливо; продукты сгорания с темпера­турой 750—900 "С поступают в

газо­вую турбину, вращающую электрогене­ратор. Кпд таких ТЭС обычно составляет

26—28%, мощность — до нескольких со­тен Мвт. ГТЭС обычно применяются

для покрытия пиков электрической нагрузки..

ТЭС с парогазотурбинной установ­кой, состоящей из паротурбинного и

газо­турбинного агрегатов, называют парогазовой электростанцией (ПГЭС), кпд

которой может достигать 42 — 43%. ГТЭС и ПГЭС также могут отпу­скать тепло

внешним потребителям, т. е. работать как ТЭЦ.

Иногда к ТЭС условно относят атом­ные электростанции (АЭС),

электро­станции с магнитогидродинамическими генераторами (МГДЭС) и

геотермиче­ские электростанции.

.

.

Реферат: Источники электроэнергии

ГИДРОЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ, гидроэлектростанция (ГЭС), комплекс

сооружений и оборудования, посредством которых энергия потока воды

преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи

гид­ротехнических сооружений, обеспечи­вающих необходимую концентрацию

по­тока воды и создание напора, и энергетического. оборудования,

преобразующего энергию движущейся под напором воды в механическую энергию

вращения которая, в свою очередь, преобразуется в электрическую энергию.

Напор ГЭС создается концентрацией падения реки на используемом участке

плотиной(рис1), либо дериваРеферат: Источники электроэнергии

цией (рис. 2), либо плотиной и дери­вацией совместно (рис. 3). Основное

энергетическое оборудование ГЭС размещается в здании ГЭС: в машинном зале

электростанции — гидроагрегаты, вспомогательное оборудование,

устройства автоматического управления и контроля; в центральном посту

управления — пульт оператора-диспетчера или автооператор

гидро­электростанции. Повышающая транс­форматорная подстанция

размещается как внутри здания ГЭС, так и в отдельных зда­ниях или на открытых

площадках. Рас­пределительные устройства зачастую располагаются на

открытой площадке. Здание ГЭС может быть разделено на секции с одним или

несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных

частей здания. При здании ГЭС или внутри него создаётся монтаж­ная площадка для

сборки и ремонта раз­личного оборудования и для вспомогательных операций по

обслуживанию ГЭС.

По установленной мощности (в .Мвт) различают ГЭС мощные (св. 250),

сред­ние (до 25) и малые (до 5). Мощность ГЭС зависит от напора На

(разности уровней верхнего и нижнего бьефа), расхода воды ,

используемого в гидротурбинах, и кпд гидроагрегата . По ряду причин

(вследствие, например сезонных изменений уровня воды в во­доёмах, непостоянства

нагрузки энерго­системы, ремонта гидроагрегатов или гидротехнических сооружений

и т. п.) напор и расход воды непрерывно меняются, а кроме того, меняется расход

при регули­ровании мощности ГЭС. Различают го­дичный, недельный и суточный

циклы

Реферат: Источники электроэнергии

режима работы ГЭС.

По максимально используемому напо­ру ГЭС делятся на высоконапорные (более 60

м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25

м). На равнинных реках напоры редко пре­вышают 100 м , в горных

условиях посредством плотины можно создавать напоры до 300 м и более, а

с помощью дерива­ции — до 1500 м. Классификация по напору

приблизительно соответствует ти­пам применяемого энергетического оборудова­ния:

на высоконапорных ГЭС применяют ковшовые и радиально-осевые турби­ны с

металлическими спиральными камера­ми; на средненапорных — поворотнолопастные и

радиально-осевые турбины с железобетонными и металлическими спираль­ными

камерами, на низконапорных — поворотнолопастные турбины в железо­бетонных

спиральных камерах, иногда горизонтальные турбины в капсулах или в открытых

камерах. Подразделение ГЭС по используемому напору имеет при­близительный,

условный характер.

По схеме использования водных ре­сурсов и концентрации напоров ГЭС обыч­но

подразделяют на русловые, приплотинные, деривационные с напорной и

без­напорной деривацией, смешанные, гидроаккумулирующие и приливные. В

русловых и приплотинных ГЭС напор воды создаётся плотиной, пе­регораживающей

реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое

затопление долины реки. В случае сооружения двух плотин на том же участке

реки площадь затопле­ния уменьшается. На равнинных реках наибольшая

экономически допустимая площадь затопления ограничивает высо­ту плотины.

Русловые и приплотинныс ГЭС строят и на равнинных многоводных реках и на

горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и

во­досбросные сооружения (рис. 4). Состав гидротехнических сооружений зависит

от вы­соты напора и установленной мощности. У русловой ГЭС здание с

размещенными в нём гидроагрегатами служит продолже­нием плотины и вместе с

ней создаёт напорный фронт. При этом с одной сто­роны к зданию ГЭС примыкает

верхний бьеф, а с другой — нижний бьеф. Под­водящие спиральные камеры

гидротурбин своими входными сечениями заклады­ваются под уровнем верхнего

бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего

бьефа.

В соответствии с назначением гидроузла в его состав могут входить

судоходные шлюзы или судоподъёмник, рыбопро­пускные сооружения,

водозаборные соо­ружения для ирригации и водоснабже­ния. В русловых ГЭС иногда

единственным сооружением, пропускающим воду, является здание ГЭС. В этих

случаях по­лезно используемая вода последовательно проходит входное сечение с

мусорозадер-живающими решётками, спиральную ка-

Реферат: Источники электроэнергии

меру, гидротурбину, отсасывающую тру­бу, а по спец. водоводам между сосед­ними

турбинными камерами произво­дится сброс паводковых расходов реки. Для русловых

ГЭС характерны напоры до 30—40 м к простейшим русловым ГЭС относятся

также ранее строившиеся сель­ские ГЭС небольшой мощности. На круп­ных равнинных

реках основное русло пере­крывается земляной плотиной, к которой примыкает

бетонная водосливная пло­тина и сооружается здание ГЭС. Такая

компоновка типична для многих отечественных ГЭС на больших равнинных реках.

Волж­ская ГЭС им. 22-го съезда КПСС— наиболее крупная среди станций

русло­вого типа.

При более высоких напорах оказывает­ся нецелесообразным передавать на зда­ние

ГЭС гидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, у

которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС

располагается за пло­тиной, примыкает к нижнему бьефу (рис. 5). В состав

гидравлической трассы меж­ду верхним и нижним бьефом ГЭС тако­го типа входят

глубинный водоприёмник с мусорозадерживающей решёткой, тур­бинный водовод,

спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнит,

сооружений в состав узла могут входить судоходные сооруже­ния и рыбоходы, а

также дополнительные водо­сбросы Примером подобного типа станций на многоводной

реке служит Братская ГЭС на реке Ангара.

Реферат: Источники электроэнергии

Другой вид компоновки приплотинных ГЭС, соответствующий горным усло­виям, при

сравнительно малых рас­ходах реки, характерен для Нурекской ГЭС на реке

Вахш (Ср. Азия), проектной мощностью 2700 Мвт. Здание ГЭС от­крытого

типа располагается ниже пло­тины, вода подводится к турбинам по одному или

нескольким напорным туннелям. Иногда здание ГЭС размещают ближе к

верх­нему бьефу в подземной (подземная ГЭС) выемке. Такая компоновка

целе­сообразна при наличии скальных осно­ваний, особенно при земляных или

на­бросных плотинах, имеющих значит. ширину. Сброс паводковых расходов

производится через водосбросные тун­нели или через открытые береговые

водо­сбросы.

В деривационных ГЭС кон­центрация падения реки создаётся по­средством

деривации; вода в начале ис­пользуемого участка реки отводится из речного

русла водоводом, с уклоном, зна­чительно меньшим, чем ср. уклон реки на этом

участке и со спрямлением изги­бов и поворотов русла. Конец деривации подводят

к месту расположения здания ГЭС. Отработанная вода либо возвраща­ется в реку,

либо подводится к след. де­ривационной ГЭС. Деривация выгодна тогда, когда

уклон реки велик. Деривац. схема концентрации напора в чистом виде

(бесплотинный водозабор или с низкой водозаборной плотиной) на практике

приводит к тому, что из реки забирается лишь небольшая часть её стока. В

других случаях в начале деривации на реке соору­жается более высокая плотина

и созда­ётся водохранилище; такая схема кон­центрации падения паз. смешанной,

т. к. используются оба принципа создания на­пора. Иногда, в зависимости от

местных условий, здание ГЭС выгоднее распола­гать на некотором расстоянии от

конца используемого участка реки вверх по течению; деривация разделяется по

от­ношению к зданию ГЭС на подводящую и отводящую. В ряде случаев с помощью

деривации производится переброска сто­ка реки в соседнюю реку, имеющую бо­лее

низкие отметки русла. Характер­ным примером является Ингурская ГЭС, где сток

реки Ингури перебрасывается туннелем в соседнюю реку Эрисцкали (Кавказ).

Сооружения безнапорных де­ривационных ГЭС состоят из трёх основных групп:

водозаборное соору­жение, водоприёмная плотина и собствен­но деривация (канал,

лоток, безнапорный туннель). Дополнит, сооружениями на ГЭС с безнапорной

деривацией являются отстойники и бассейны суточного регули­рования, напорные

бассейны, холостые водосбросы и турбинные водоводы. Крупнейшая ГЭС с

безнапорной подводящей деривацией — ГЭС Роберт-Мозес (США) с мощностью 1950

Мвт, а с безнапорной отводящей деривацией — Ингурская ГЭС (СССР) мощностью

1300 Мвт.

На ГЭС с напорной дерива­цией водовод (туннель, металлическая, деревянная или

железобетонная труба) прокладывается с несколько большим про­дольным уклоном,

чем при безнапорной деривации. Применение напорной подводящей деривации

обу­словливается изменяемостью горизон­та воды в верхнем бьефе, из-за чего в

процессе эксплуатации изменяется и внутренний напор деривации. В состав

соору­жений ГЭС этого типа входят: плотина, водозаборный узел, деривация с

напор­ным водоводом, станционный узел ГЭС с уравнительным резервуаром и

турбин­ными водоводами, отводящая деривация в виде канала или туннеля (при

подзем­ной ГЭС). Крупнейшая ГЭС с напорной подводящей деривацией —

Нечако-Кемано (Канада) проектной мощностью 1792 Мвт.

ГЭС с напор ной отводящей деривацией применяется в усло­виях значит, изменений

уровня воды в реке в месте выхода отводящей дерива­ции или по экономическим

соображениям, В этом случае необходимо сооружение уравнительного резервуара (в

начале отводя­щей деривации) для выравнивания не­установившегося потока воды в

реке. Наиболее мощная ГЭС (350 Мвт) этого типа — ГЭС Харспронгет

(Швеция),

Особое место среди ГЭС занимают гидроаккумулирующие электростанции

(ГАЭС) и приливные электростанции (ПЭС). Сооружение ГАЭС обусловлено

ростом потребности в пиковой мощности в крупных энергетических системах, что и

определяет генераторную мощность, тре­бующуюся для покрытия пиковых на­грузок.

Способность ГЛЭС аккумулиро­вать энергию основана на том, что сво­бодная в

энергосистеме в некоторрый пе­риод времени (провала графика потреб­ности)

электрическая энергия используется агрегатами ГАЭС, которые, работая в ре­жиме

насоса, нагнетают воду из водохра­нилища в верхний аккумулирующий бас­сейн. В

период пиков нагрузки аккуму­лированная т. о. энергия возвращается в

энергосистему (вода из верхнего бассей­на поступает в напорный трубопровод и

вращает гидроагрегаты, работающие в режиме генератора тока). Мощность отд. ГАЭС

с такими обратимыми гидроагрега­тами достигает 1620 Мвт (Корнуолл,

США).

ПЭС преобразуют энергию морских приливов в электрическую. Электроэнер­гия

приливных ГЭС в силу некоторых особенностей, связанных с периодичным

ха­рактером приливов и отливов, может быть использована в энергосистемах лишь

совместно с энергией регулирующих электростанций, которые восполняют про­валы

мощности приливных электростан­ций в течение суток или месяцев. В 1967 во

Франции было завершено стро­ительство крупной ПЭС на реке Ране (24 агрегата

общей мощностью 240 Мвт). В СССР в 1968 в Кислой Губе (Кольский п-ов)

вступила в строй первая опытная ПЭС мощностью 0,4 Мвт, на которой ныне

проводятся эксперименталь­ные работы для будущего строительства ПЭС.

По характеру использования воды и условиям работы различают ГЭС на бытовом стоке

без регулирования, с суточным, недельным, сезонным (годовым) и многолетним

регулированием. Отдельные ГЭС или каскады ГЭС, как прави­ло, работают в системе

совместно с конденсационными электростанциями (КЭС),

теплоэлектроцентралями (ТЭЦ), атомными электростанциями (АЭС),

газотурбинными установками (ГТУ), причём в зависимости от характера уча­стия

в покрытии графика нагрузки энер­госистемы ГЭС могут быть базисными,

полупиковыми и пиковыми.

Важнейшая особенность гидроэнергетических ресурсов по сравнению с

топливно-энергетическими ресурсами — их непрерывная возобновляемость.

Отсутствие потребности в топливе для ГЭС определяет низ­кую себестоимость

вырабатываемой на ГЭС электроэнергии. Поэтому сооруже­нию ГЭС, несмотря на

значительные, удельные капиталовложения на 1 квт установлен­ной

мощности и продолжительные сроки строи­тельства, придавалось и придаётся

боль­шое значение, особенно когда это связано с размещением электроёмких

производств.

Реферат: Источники электроэнергии

Одни из первых гидроэлектрических уста­новок мощностью всего в несколько сотен

Вт были сооружены в 1876—81 в Штангассе и Лауфене (Германия) и в Грейсайде

(Ан­глия). Развитие ГЭС и их промышленное исполь­зование тесно связано с

проблемой пере­дачи электроэнергии на расстояние: как правило, места, наиболее

удобные для сооружения ГЭС, удалены от основных потре­бителей электроэнергии.

Протяжённость существовавших в то время линий электро­передач не превышала 5—10

км, самая длинная линия 57 км. Сооружение линии электропередачи (170

км) от Лауфенской ГЭС до Франкфурта-на-Майне (Герма­ния) для снабжения

электроэнергией Международный электротехнический выставки (1891) открыла

широкие возможности для развития ГЭС. В 1892 промышленный ток дала ГЭС,

построенная на водопаде в Бюлахе (Швейцария), почти одновременно в 1893 были

построены ГЭС в Гелыпене (Шве­ция), на реке Изар (Германия) и в Кали­форнии

(США). В 1896 вступила в строй Ниагарская ГЭС (США) постоянного то­ка; в 1898

дала ток ГЭС Рейпфельд (Гер­мания), а в 1901 стали под нагрузку

гид­рогенераторы ГЭС Жонат (Франция).

В России существовали, но так и не бы­ли реализованы детально разработанные

проекты ГЭС русских учёных Ф. А. Пироцкого, И. А. Тиме, Г. О. Графтио, И. Г.

Александрова и др., предусмат­ривавших, в частности, использование порожистых

участков рек Днепр, Вол­хов, Западная Двина, Вуокса и др. Так, напр., уже в

1892—95 русским инженером В. Ф. Добротворским были составлены проекты

сооружения ГЭС мощностью 23,8 Мвт на реке Нарова и 36,8 Мвт на

водопаде

Б. Иматра. Реализации этих проектов препятствовали как косность царской

бюрократии, так и интересы частных капиталистических групп, связанных с

топливной промышленностью. Первая промышленная ГЭС в России мощностью около 0,3

Мвт (300 квт) была построена в 1895—96 под руководством русских

инженеров В.Н.Чиколсва и Р. Э. Классона для электро­снабжения Охтинского

порохового завода в Петербурге. В 1909 закончилось строи­тельство крупнейшей в

дореволюционной Рос­сии Гиндукушской ГЭС мощностью 1,35 Мвт (1350

квт) на р. Мургаб (Туркмения). В период 1905—17 всту­пили в строй

Саткинская, Алавердинская, Каракультукская, Тургусунская, Сестроредкая и др.

ГЭС небольшой мощ­ности. Сооружались также частные фаб­рично-заводские

гидроэлектрические установ­ки с использованием оборудования ино­странных фирм.

1-я мировая война 1914—18 и связан­ный с ней интенсивный рост промышленности

некоторых западных стран повлекли за собой раз­витие действовавших и

строительство новых энергопромышленных центров, в т. ч. на базе ГЭС. В

результате мощность ГЭС во всём мире к 1920 достигла 17 тыс. Мвт, а

мощ­ность отдельных ГЭС, напр. Масл-Шолс (США), Иль-Малинь (Канада), превысила

400 Мвт (400 тыс. квт).

Общая мощность ГЭС России к 1917 составляла всего около 16 Мвт: самой

круп­ной была Гиндукушская ГЭС. Строи­тельство мощных ГЭС началось по су­ществу

только после Великой Октябрьской социалистической революции. В восстановит.

период (20-е гг.) в соответствии с планом ГОЭЛРО были построены первые

круп­ные ГЭС — Волховская (ныне Волхов­ская ГЭС им. В. И. Ленина) и

ЗемоАечальская ГЭС им. В. И. Ленина. В годы первых пятилеток (1929—40)

всту­пили в строй ГЭС — Днепровская, Нижнесвирская, Рионская и др.

К началу Великой Отечеств, войны 1941—45 было введено в эксплуатацию 37 ГЭС

общей мощностью более 1500 Мвт. Во время войны было приостановлено

на­чатое строительство ряда ГЭС общей мощ­ностью около 1000 Мвт (1 млн.

квт). Значит, часть ГЭС общей мощностью около 1000 Мвт оказалась

разрушенной или демонтированной. Началось соору­жение новых ГЭС малой и средней

мощ­ности на Урале (Широковская, Верхотурская, Алапаевская, Белоярская и др. ),

в Средней Азии (Аккавакские, Фархадская, Саларская, Нижнебуэсуйские и др.), на

Северном Кавказе (Майкопская, Орджоникидзевская, Краснополянская), в

Азербайджане (Мингечаурская ГЭС), в Грузии (Читахевская ГЭС) и в Армении

(Гюмушская ГЭС). К кон. 1945 в Совет­ском Союзе мощность всех ГЭС, вместе с

восстановленными, достигла 1250 Мвт, а годовая выработка электроэнергии

— 4,8 млрд. квт-ч.

Реферат: Источники электроэнергии

В начале 50-х гг. развернулось стро­ительство крупных гидроэлектростанций на р.

Волге у города. Горького, Куйбышева и Волгограда, Каховской и Кременчугской ГЭС

на Днепре, а также Цимлян­ской ГЭС на Дону. Волжские ГЭС им. В. И. Ленина и им.

22-го съезда КПСС стали первыми из числа наиболее мощ­ных ГЭС в СССР и в мире.

-Во 2-й пол. 50-х гг. началось строительство Брат­ской ГЭС на реке Ангаре и

Красноярской ГЭС на р. Енисее. С 1946 .по 1958 в СССР были построены и

восстановлены 63 ГЭС общей мощностью 9600 Мвт. За семилетие 1959—65

было введено 11 400 Мвт новых гидравлических мощностей и суммарная

мощность ГЭС достигла 22200 Мвт (табл. 1). К 1970 в СССР продолжалось

строительство 35 промышленных ГЭС (суммарной мощностью 32 000 Мвт), в

т. ч. 11 ГЭС единичной мощностью свы­ше 1000 Мвт: Саяно-Шушенская,

Крас­ноярская, Усть-Илимская, Нурекская, Ингурская, Саратовская, Токтогульская,

Нижнекамская, Зейская, Чиркейская, Чебоксарская.

В 60-х гг. наметилась тенденция к сни­жению доли ГЭС в общем мировом

производстве электроэнергии и всё большему использованию ГЭС для покрытия

пико­вых нагрузок. К 1970 всеми ГЭС мира производилось около 1000 млрд.

квт-ч электроэнергии в год, причём начиная с 1960 доля ГЭС в мировом

производстве сни­жалась в среднем за год примерно на 0,7% . Особенно быстро

снижается доля ГЭС в общем производстве электроэнергии в ранее традиционно

считавшихся «гидроэнер­гетическими» странах (Швейцария, Ав­стрия, Финляндия,

Япония, Канада, от­части Франция), т. к. их экономический гидроэнергетический

потенциал практи­чески исчерпан.

Несмотря на снижение доли ГЭС в общей выработке, абсолютные значения

производства электроэнергии и мощности ГЭС непрерывно растут вследствие

строитель­ства новых крупных электростанций. В 1969 в мире насчитывалось свыше

50 дей­ствующих и строящихся ГЭС единичной мощностью 1000 Мвт и выше,

причём 16 из них — в Советском Союзе.

Дальнейшее развитие гидроэнергетического строительства в СССР предусматривает

сооружение каскадов ГЭС с комплексным использованием водных ре­сурсов в целях

удовлетворения нужд сов­местно энергетики, водного транспорта, водоснабжения,

ирригации, рыбного хозяйствава и пр. Примером могут служить Днепров­ский,

Волжско-Камский, Ангаро-Енисейский, Севанский и др. каскады ГЭС.

Крупнейшим районом гидроэнергостроительства СССР до 50-х гг. 20 в.

тради­ционно была Европейская часть территории Союза, на долю которойрой

приходилось около 65% элек­троэнергии, вырабатываемой всеми ГЭС СССР. Для

современного гидроэнергостроительства характерно: продолжение строитель­ства

и совершенствование низко и средне-напорных ГЭС на реках Волге, Каме, Днепре,

Даугаве и др., строительство крупных высоконапорных ГЭС в трудно­доступных р-

нах Кавказа, Ср. Азии, Вост. Сибири и т. п., строительство сред­них и крупных

деривационных ГЭС на горных реках с большими уклонами с использованием

переброски стока в со­седние бассейны, но главное — строи­тельство мощных ГЭС

на крупных реках Сибири и Д. Востока — Енисее, Ангаре, Лене и др. ГЭС,

сооружаемые в богатых гидроэнергоресурсами р-нах Сибири и Д. Востока, вместе

с тепловыми электро­станциями, работающими на местном органическом топливе

(природный газ, уголь, нефть), станут основной энергетической базой для

снабжения дешёвой электроэнергией раз­вивающейся промышленности Сибири,

Средней Азии и Европейской части СССР.

атомная ЭЛЕКТРОСТАНЦИЯ (АЭС), электростанция, в которой атомная

(ядер­ная) энергия преобразуется в элект­рическую. Генератором энергии на АЭС

является атомный реактор (см. Ядер­ный реактор). Тепло, которое

выделя­ется в реакторе в результате цепной реакции деления ядер некоторых

тяжёлых элементов, затем так же, как и на обыч­ных тепловых электростанциях

(ТЭС), преобразуется в электроэнергию, В отли­чие от ТЭС, работающих на

органическом топливе, АЭС работает на ядерном горю­чем (в основе

233U, 235U, 239Pu) При делении 1 г изотопов

урана или плутония высво­бождается 22 500 квт • ч, что эквивалентно

энергии, содержащейся в 2800 кг услов­ного топлива. Установлено, что

мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.)

существенно превышают энергоресурсы природных запасов органического, топлива

(нефть, уголь, природный газ и др.). Это открывает широкие перспективы для

удовлетворе­ния быстро растущих потребностей в топ­ливе. Кроме того, необходимо

учиты­вать всё увеличивающийся объём потреб­ления угля и нефти для

технологических целей мировой химической промышленности, которая становится

серьёзным конкурентом тепло­вых электростанций. Несмотря на откры­тие новых

месторождений органического топ­лива и совершенствование способов его добычи, в

мире наблюдается тенденция к относительному, увеличению его стоимости. Это

создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива

органического происхождения. Очевидна необходимость быстрейшего развития

атомной энергетики, края уже занимает заметное место в энергетическом балансе

ряда промышленных стран мира.

Первая в мире АЭС опытно-промышленного на­значения (рис. 1) мощностью 5 Мвт

была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра

использовалась в военных це­лях. Пуск первой АЭС ознаменовал от­крытие нового

направления в энергети­ке, получившего признание на 1-й Международной

научно-технической конференции по мирному использованию атомной энер­гии

(август 1955, Женева).

В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100

Мвт (полная проектная мощность 600 Мвт). В том же году развернулось

строительство Белоярской АЭС, а 26 апреля 1964 генератор 1-й очереди (блок

мощностью 100 Мвт) выдал ток в Свердловскую энергосистему, 2-й блок

мощностью 200 Мвт сдан в эксплуата­цию в октябре 1967. Отличительная

особенность Белоярской АЭС — перегрев пара (до получения нужных параметров)

непосредственно в ядерном реакторе, что позволило применить на ней обычные

современные турбины почти без всяких переделок.

Реферат: Источники электроэнергии В сентябре 1964 был пущен 1-й

блок Ново­воронежской АЭС мощностью 210 Мвт. Себестоимость 1 квт •

ч электроэнергии (важнейший экономический показатель ра­боты всякой

электростанции) на этой АЭС систематически снижалась: она составляла 1,24 коп.

в 1965, 1,22 коп. в 1966, 1,18 коп. в 1967, 0,94 коп. в 1968. Первый блок

Нововоронежской АЭС был построен не только для промышленного поль­зования, но

и как демонстрация объект для показа возможностей и преимуществ атомной

энергетики, надёжности и безо­пасности работы АЭС. В ноября 1965 в г. Мелекессе

Ульяновской обл. вступила в строй АЭС с водо-водяным реактором

«кипящего» типа мощностью 50 Мвт., реактор собран по одноконтурной

схе­ме, облегчающей компоновку станции. В декабре 1969 был пущен второй блок

Нововоронежской АЭС (350 Мвт).

За рубежом первая АЭС промышленного назна­чения мощностью 46 Мвт была

введена в эксплуатацию в 1956 в Колдер-Холле (Англия). Через год вступила в

строй АЭС 1 мощностью 60 Мвт. в Шиппингпорт (США).

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение,

приведена на рис. 2. Тепло, выделяется в активной зоне реактора,

теплоносителем вбирается водой (теплоносителем) 1-г контура,

которая прокачивается через реактор циркуляционным насосом г

Нагретая вода из реактора поступав в теплообменник (парогенератор) 3,

где передаёт тепло, полученное в реакторе воде 2-го контура. Вода 2-го контура

испаряется в парогенераторе, и образуется пар поступает в турбину 4.

Наиболее часто на АЭС применяют 4 типа реакторов на тепловых нейтронах 1)

водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2)

графито-водные с водяным теплоносителем и графитовым замедлителем; 3)

тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя

4) графито-газовые с газовым теплоноси­телем и графитовым замедлителем.

Выбор преимущественно применяемого типа реактора определяется главным образом

на­копленным опытом в реактороносителе а также наличием

необходимого промышленного оборудования, сырьевых запасов и т. л. В СССР

строят главным образом графито-водные и водо-водяные реакторы. На АЭС США

наибольшее распространение получили водо-водяные реакторы. Графито-газо­вые

реакторы применяются в Англии. В атомной энергетике Канады преобла­дают АЭС с

тяжеловодными реакторами.

Реферат: Источники электроэнергии

В зависимости от вида и агрегатного со­стояния теплоносителя создается тот или

иной термодинамический цикл АЭС. Выбор верх­ней температурной границы

термодинамического цикла определяется максимально допусти­мой темп-рой оболочек

тепловыделяющих элементов (ТВЭЛ), содержащих ядерное го­рючее, допустимой

темп-рой собственно ядер­ного горючего, а также свойствами теплоноси­теля,

принятого для данного типа реактора. На АЭС. тепловой реактор которой

охлаждает­ся водой, обычно пользуются низкотемпера­турными паровыми циклами.

Реакторы с газовым теплоносителем позволяют применять относительно более

экономичные циклы водяного пара с повышенными начальными дав­лением и темп-рой.

Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре

циркулирует теплоноситель, 2-й контур — пароводяной. При реакторах с кипящим

водяным или высокотемпературным газовым теплоносителем возможна одно­контурная

тепловая АЭС. В кипящих реак­торах вода кипит в активной зоне, полученная

пароводяная смесь сепарируется, и насыщенный пар направляется или

непосредственно в турбину, или предварительно возвращается в активную зону для

перегрева.

(рис. 3). В высокотемпературных графито-газовых реакторах возможно применение

обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры

сго­рания.

При работе реактора концентрация де­лящихся изотопов в ядерном топливе

постепенно уменьшается, и топливо выгорает. Поэтому со временем их заме­няют

свежими. Ядерное горючее пере­загружают с помощью механизмов и

при­способлений с дистанционным управлением. Отработавшее топливо переносят в

бас­сейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его си­стемам относятся: собственно реактор с

биологической защитой, теплообменни­ки, насосы или газодувные установки,

осуществляющие циркуляцию теплоноси­теля; трубопроводы и арматура циркуляции

контура; устройства для перезагруз­ки ядерного горючего; системы спец.

вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного ис­полнения реакторы имеют отличит,

осо­бенности: в корпусных реакторах топливо и замедлитель расположены

внутри корпу­са, несущего полное давление теплоно­сителя; в канальных

реакторах топливо, охлаждаемые теплоносителем, устанавли­ваются в спец.

трубах-каналах, пронизы­вающих замедлитель, заключённый в тонкостенный кожух.

Такие реакторы применяются в СССР (Сибирская, Белоярская АЭС и др.),

Для предохранения персонала АЭС от радиационного облучения реактор окружают

биологической защитой, основным материалом для которой служат бетон, вода,

серпантиновый песок. Оборудование реакторного контура должно быть полностью

герме­тичным. Предусматривается система конт­роля мест возможной утечки

теплоноси­теля, принимают меры, чтобы появление не плотностей и разрывов

контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и

окружаю­щей местности. Оборудование реакторно­го контура обычно устанавливают

в герметичных боксах, которые отделены от остальных помещений АЭС

биологической защитой и при работе реактора не обслу­живаются, Радиоактивный

воздух и не­большое количество паров теплоносителя, обусловленное наличием

протечек из контура, удаляют из необслуживаемых помещений АЭС спец. системой

вентиляции, в которой для исключения возможно­сти загрязнения атмосферы

предусмот­рены очистные фильтры и газгольдеры выдержки. За выполнением правил

ра­диационной безопасности персоналом АЭС сле­дит служба дозиметрического

контроля.

При авариях в системе охлаждения реактора для исключения перегрева и

нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в

течение несколько секунд) глушение ядер­ной реакции; аварийная система

расхо­лаживания имеет автономные источники питания.

Наличие биологической защиты, систем спец. вентиляции и аварийного

расхо­лаживания и службы дозиметрического контро­ля позволяет полностью

обезопасить обслуживающий персонал АЭС от вред­ных воздействий радиоактивного

облу­чения.

Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС.

Отличит, особенность боль­шинства АЭС — использование пара сравнительно

низких параметров, на­сыщенного или слабо перегретого.

При этом для исключения эрозионного повреждения лопаток последних ступеней

турбины частицами влаги, содержащейся в пару, в турбине устанавливают

сепари­рующие устройства. Иногда необходимо применение выносных сепараторов

и промежуточных перегревателей пара. В связи с тем что теплоноситель и

со­держащиеся в нём примеси при прохож­дении через активную зону реактора

активируются, конструктивное решение оборудования машинного зала и системы

охлаждения конденсатора турбины од­ноконтурных АЭС должно полностью исключать

возможность утечки теплоно­сителя. На двухконтурных АЭС с высо­кими

параметрами пара подобные требо­вания к оборудованию машинного зала не

предъявляются.

В число специфичных требований к компоновке оборудования АЭС входят:

минимально возможная протяжённость коммуникаций, связанных с радиоак­тивными

средами, повышенная жёст­кость фундаментов и несущих конст­рукций реактора,

надёжная организа­ция вентиляции помещений. показан раз­рез главного корпуса

Белоярской АЭС с канальным графито-водным реакто­ром. В реакторном зале

размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура

контроля. АЭС скомпонована по блочному принципу реактор—турбина. В машинном

зале рас­положены турбогенераторы и обслужи­вающие их системы. Между машинным

II реакторным залами размещены вспомогательные оборудование и системы

управле­ния станцией.

Экономичность АЭС определяется её основным техническим показателями: единичная

мощность реактора, энергонапря­жённость активной зоны, глубина вы­горания

ядерного горючего, коэффецента ис­пользования установленной мощности АЭС за

год. С ростом мощности АЭС удельные капиталовложения в псе (стои­мость

установленного кет) снижаются более резко, чем это имеет место для ТЭС.

В этом главная причина стремле­ния к сооружению крупных АЭС с большой единичной

мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей

в себестоимости вырабатываемой электроэнергии 30 - 40% (на ТЭС 60—70%). Поэтому

круп­ные АЭС наиболее распространены в промышленно развитых районах с

огра­ниченными запасами обычного топлива, а АЭС небольшой мощности — в

трудно­доступных или отдалённых районах, напр. АЭС в пос. Билибино (Якут.

ЛССР с электрической мощностью типового блока 12 Мет. Часть

тепловой мощности реактора этой АЭС (29 Мет) расходу ст­оя на теплоснабжение.

Наряду с выработ­кой электроэнергии АЭС используются также для опреснения

морской воды. Так, Шевченковская АЭС (Казах. ССР) электрической мощностью 150

Мвт рассчи­тана на опреснение (методом дистилля­ции) за сутки до

150 000 т воды из Кас­пийского м.

В большинстве промышленно развитых стран (СССР, США, Англия, Фран­ция, Канада,

ФРГ, Япония, ГДР и др.) по прогнозам мощность действующих и строящихся АЭС к

1980 будет доведена до десятков Гвт. По данным Международного атомного

агентства ООН, опубликован­ным в 1967, установленная мощность всех АЭС в мире к

1980 достигнет 300 Гвт.

В Сов. Союзе осуществляется широкая программа ввода в строй крупных энер-гетич.

блоков (до 1000 Мет) с реакторами на тепловых нейтронах. В 1948—49 были начаты

работы по реакторам на бы­стрых нейтронах для промышленной АЭС. Физической

особенности таких реакторов позволяют осуществить расширенное воспроизводство

ядерного горючего (коэффициент воспроизводства от 1,3 до 1,7), что даёт

возможность использовать не только 235U , но и сырье­вые

материалы 238U и 232Th . Кроме того, реакторы на

быстрых нейтронах не со­держат замедлителя, имеют сравнитель­но малые размеры и

большую загрузку. Этим и объясняется стремление к интен­сивному развитию

быстрых реакторов в СССР. Для исследований по быстрым реакторам были

последовательно соору­жены экспериментальные и опытные реакторы БР-1, БР-2,

БР-З, БР-5, БФС. Полученный опыт обусловил переход от исследований модельных

установок к проектированию и сооружению промышленных АЭС на быстрых нейтронах

(БН-350) в г. Шевченко и (БН-600) на Белоярской АЭС. Ведутся исследования

реакторов для мощных АЭС, напр. в г. Мелексссе построен опытный реактор БОР-60.

Крупные АЭС сооружаются и в ряде развивающихся стран (Индия, Паки­стан и др.).

На 3-й Международной научно-технической конференции по мирному использова­нию

атомной энергии (1964, Женева) было отмечено, что широкое освоение ядерной

энергии стало ключевой пробле­мой для большинства стран. Состояв­шаяся в

Москве в августе 1968 7-я Мировая энергетическим конференция (МИРЭК-УП)

подтвердила актуальность проблем выбо­ра направления развития ядерной

энер­гетики на следующем этапе (условно 1980—2000), когда АЭС станет одним из

оси. производителей электроэнергии.

ЭНЕРГИЯ СОЛНЦА

В последнее время интерес к проблеме использования сол­нечной энергии резко

возрос, и хотя этот источник также отно­сится к возобновляемым, внимание,

уделяемое ему во всем мире, заставляет нас рассмотреть его возможности

отдельно.

Потенциальные возможности энергетики, основанной на использовании

непосредственно солнечного излучения, чрезвычайно велики.

Заметим, что использование всего лишь 0.0125 % этого ко­личества энергии

Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики,

а использование 0.5 % - пол­ностью покрыть потребности на перспективу.

К сожалению, вряд ли когда-нибудь эти огромные потенци­альные ресурсы

удастся реализовать в больших масштабах. Одним из наиболее серьезных

препятствий такой реализации является низкая интенсивность солнечного

излучения. Даже при наилучших атмосферных условиях ( южные широты, чистое

небо ) плотность потока солнечного излучения составляет не более 250 Вт/м2.

По­этому, чтобы коллекторы солнечного излучения «собирали» за год энергию,

необходимую для удовлетворения всех потребностей че­ловечества нужно

разместить их на территории 130 000 км2 !

Необходимость использовать коллекторы огромных размеров, кроме того, влечет

за собой значительные материальные затраты. Простейший коллектор солнечного

излучения представляет собой зачерненный металлический ( как правило,

алюминиевый ) лист, внутри которого располагаются трубы с циркулирующей в

ней жид­костью. Нагретая за счет солнечной энергии, поглощенной

кол­лектором, жидкость поступает для непосредственного использова­ния.

Согласно расчетам изготовление коллекторов солнечного из­лучения площадью 1

км2, требует примерно 10^4 тонн алюминия. Доказанные же на сегодня мировые

запасы этого металла оценива­ются в 1.17*10^9 тонн.

Из написанного ясно, что существуют разные факторы, огра­ничивающие мощность

солнечной энергетики. Предположим, что в будущем для изготовления

коллекторов станет возможным приме­нять не только алюминий, но и другие

материалы. Изменится ли ситуация в этом случае ? Будем исходить из того,

что на от­дельной фазе развития энергетики ( после 2100 года ) все миро­вые

потребности в энергии будут удовлетворяться за счет сол­нечной энергии. В

рамках этой модели можно оценить, что в этом случае потребуется «собирать»

солнечную энергию на площади от 1*10^6 до 3*10^6 км2. В то же время общая

площадь пахотных зе­мель в мире составляет сегодня 13*10^6 км2.

Солнечная энергетика относится к наиболее материалоемким видам производства

энергии. Крупномасштабное использование солнечной энергии влечет за собой

гигантское увеличение пот­ребности в материалах, а следовательно, и в

трудовых ресурсах для добычи сырья, его обогащения, получения материалов,

изго­товление гелиостатов, коллекторов, другой аппаратуры, их пере-

возки. Подсчеты показывают, что для производства 1 МВт*год электрической

энергии с помощью солнечной энергетики потребу­ется затратить от 10 000 до

40 000 человеко-часов. В традици­онной энергетике на органическом топливе

этот показатель сос­тавляет 200-500 человеко-часов.

Пока еще электрическая энергия,рожденная солнечными луча­ми, обходится

намного дороже, чем получаемая традиционными способами. Ученые надеются,

что эксперименты,которые они прове­дут на опытных установках и

станциях,помогут решить не только технические,но и экономические проблемы.

Ветровая энергия.

Огромна энергия движущихся воздушных масс.Запасы энергии ветра более чем в

сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду

на земле дуют ветры-от легко­го ветерка, несущего желанную прохладу в летний

зной, до могу­чих ураганов, приносящих неисчислимый урон и разрушения.

Всег­да неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на

просторах нашей страны, могли бы легко удовлетворить все ее потребности в

электроэнергии! Климатические условия позволяют развивать ветроэнергетику

на огромной территории-от наших западных границ до берегов Енисея. Богаты

энергией ветра северные районы страны вдоль побережья Северного Ледовитого

океана, где она особенно необходима мужественным людям, обжи­вающим эти

богатейшие края. Почему же столь обильный, доступ­ный да и экологически

чистый источник энергии так слабо ис­пользуется? В наши дни двигатели,

использующие ветер, покрыва­ют всего одну тысячную мировых потребностей в

энергии.

Техника 20 века открыла совершенно новые возможности для ветроэнергетики,

задача которой стала другой-получение элект­роэнергии. В начале века

Н.Е.Жуковский разработал теорию вет­родвигателя, на основе которой могли быть

созданы высокопроиз­водительные установки, способные получать энергию от

самого слабого ветерка. Появилось множество проектов ветроагрегатов,

несравненно более совершенных, чем старые ветряные мельницы. В новых проектах

используются достижения многих отраслей знания.

В наши дни к созданию конструкций ветроколеса-сердца любой

ветроэнергетической установки-привлекаются специалисты-са­молетостроители,

умеющие выбрать наиболее целесообразный про­филь лопасти, исследовать его в

аэродинамической трубе. Усили­ями ученых и инженеров созданы самые

разнообразные конструкции современных ветровых установок.

ЭНЕРГИЯ ЗЕМЛИ.

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся

в недрах земного шара. Память человечества хранит предания о

катастрофических извержениях вулканов, унес­ших миллионы человеческих жизней,

неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже

сравнительно небольшого вулкана колоссальна, она многократно превышает

мощ­ность самых крупных энергетических установок, созданных руками человека.

Правда, о непосредственном использовании энергии вулканических извержений

говорить не приходится-нет пока у лю­дей возможностей обуздать эту

непокорную стихию, да и, к счастью, извержения эти достаточно редкие

события. Но это про­явления энергии, таящейся в земных недрах, когда лишь

крохот­ная доля этой неисчерпаемой энергии находит выход через огне­дышащие

жерла вулканов.

Маленькая европейская страна Исландия-«страна льда» в дословном переводе-

полностью обеспечивает себя помидорами, яб­локами и даже бананами!

Многочисленные исландские теплицы по­лучают энергию от тепла земли, других

местных источников энер­гии в Исландии практически нет. Зато очень богата

эта страна горячими источниками и знаменитыми гейзерами-фонтанами горячей

воды, с точностью хронометра вырывающейся из-под земли. И хотя не исландцам

принадлежит приоритет в использовании тепла под­земных источников (еще

древние римляне к знаменитым баням-тер­мам Каракаллы-подвели воду из-под

земли), жители этой малень­кой северной страны эксплуатируют подземную

котельную очень интенсивно. Столица - Рейкьявик, в которой проживает

половина населения страны, отапливается только за счет подземных источ­ников.

Но не только для отопления черпают люди энергию из глубин земли. Уже давно

работают электростанции, использующие горячие подземные источники. Первая

такая электростанция, совсем еще маломощная, была построена в 1904 году в

небольшом итальянском городке Лардерелло, названном так в честь французского

инжене­ра Лардерелли,который еще в 1827 году составил проект исполь­зования

многочисленных в этом районе горячих источников. Пос­тепенно мощность

электростанции росла, в строй вступали все новые агрегаты, использовались

новые источники горячей воды, и в наши дни мощность станции достигла уже

внушительной величи­ны-360 тысяч киловатт. В Новой Зеландии существует

такая электростанция в районе Вайракеи, ее мощность 160 тысяч кило­ватт. В

120 километрах от Сан-Франциско в США производит электроэнергию

геотермальная станция мощностью 500 тысяч кило­ватт.

Савинов А. 10 «Г»



(C) 2009