Научная Петербургская Академия

Реферат: Трансформаторы и передача энергии на расстояние

Реферат: Трансформаторы и передача энергии на расстояние

Реферат на тему: Реферат: Трансформаторы и передача энергии на расстояние
Реферат: Трансформаторы и передача энергии на расстояние
Передача
энергии на расстояние Ученика 11-Г класса Гимназии № 3 г.Днепропетровска Недашковского Кирилла Трансформатор Вы приобрели холодильник ЗИЛ. Продавец вас предупредил, что холодильник рассчитан на напряжение в сети 220 В. А у вас в доме сетевое напряжение 127 В. Безвыходное положение? Ничуть. Просто придется сделать дополнительную затрату и приобрести трансформатор. Трансформатор — очень простое устройство, которое позволяет как повышать, так и понижать напряжение. Преобразование переменного тока осуществляется с помощью трансформаторов. Впервые трансформаторы были использованы в 1878 г. русским ученым П. Н. Яблочковым для питания изобре­тенных им «электрических свечей» — нового в то время источника света. Идея П. Н. Яблочкова была развита сотрудником Москов­ского университета И. Ф. Усагиным, сконструировавшим усовершенствованные трансформаторы.

Реферат: Трансформаторы и передача энергии на расстояние

Трансформатор состоит из замкнутого железного сердечника, на который надеты две (иногда и более) катушки с проволочны­ми обмотками (рис. 1). Одна из обмоток, называемая первич­ной, подключается к источнику переменного напряжения. Вторая обмотка, к которой присоединяют «нагрузку», т. е. приборы и устройства, потребляющие электроэнергию, называется вторич­ной. Схема устройства трансформатора с двумя обмотками при­ведена на рисунке 2, Рис.1 Рис.2 а принятое для него условное обозначе­ние — на рис. 3.
Реферат: Трансформаторы и передача энергии на расстояние
Действие трансформатора основано на явлении электромаг­нитной индукции. При прохождении переменного тока по первич­ной обмотке в железном сердечнике появляется переменный маг­нитный поток, который возбуждает э.д.с. индукции в каждой обмотке. Причем мгновенное значение э.д.с. индукции е в любом витке первичной или вторичной обмотки согласно закону Фарадея определяется формулой е = - Δ Ф/ Δ t. Если Ф = Ф0 соsωt, то е = ω Ф0 sinωt, или е = E0 sinωt , где E0= ω Ф0 - амплитуда э.д.с. в одном витке. В первичной обмотке, имеющей п1 витков, полная э.д.с. индук­ции e1 равна п1е. Во вторичной обмотке полная э.д.с. е2 равна п2 е, где п2 - чис­ло витков этой обмотки. Отсюда следует, что e1/ е2 = п1/ п2. (1) Сумма напряжения u1, приложенного к первичной обмотке, и э.д.с. e1 должна равняться падению напряжения в первичной обмотке: u1 + e1 = i1 R1, где R1 - активное сопротивление обмотки, а i1 - сила тока в ней. Данное уравнение непосредственно вытекает из общего урав­нения. Обычно активное сопротивле­ние обмотки мало и членом i1 R1 можно пре­небречь. Поэтому u1 ≈ - e1. (2) При разомкнутой вторичной обмотке трансформатора ток в ней не течет, и имеет место соотношение u2 ≈ - e2. (3) Так как мгновенные значения э.д.с. e1 и e2 изменяются синфазно, то их отношение в формуле (1) можно заменить отношением дей­ствующих значений E1 и E2 этих э.д.с. или, учитывая равенства (2) и (3), отношением действующих значений напряжений U 1 и U2. U1/U2 = E1/E2 = n1/ n2= k. (4) Величина k называется коэффициентом трансформации. Ес­ли k>1, то трансформатор является понижающим, при k<1 - повышающим. При замыкании цепи вторичной обмотки в ней течет ток. Тогда соотношение u 2 ≈ - e2 уже не выполняется точно, и соответ­ственно связь между U1 и U2 становится более сложной, чем в уравнении (4). Согласно закону сохранения энергии мощность в первичной цепи должна равняться мощности во вторичной цепи: U1I1 = U2I2, (5) где I1 и I2— действующие значения силы в первичной и вто­ричной обмотках. Отсюда следует, что U1/U2 = I1/I2 . (6) Это означает, что, повышая с помощью трансформатора на­пряжение в несколько раз, мы во столько же раз уменьшаем си­лу тока (и наоборот). Вследствие неизбежных потерь энергии на выделение тепла в обмотках и железном сердечнике уравнения (5) и (6) вы­полняются приближенно. Однако в современных мощных транс­форматорах суммарные потери не превышают 2—3%. В житейской практике часто приходится иметь дело с трансформаторами. Кроме тех трансформаторов, которыми мы пользуемся волей-неволей из-за того, что промышленные приборы рассчитаны на одно напряжение, а в городской сети используется другое, — кроме них приходится иметь дело с бобинами автомобиля. Бобина — это повышающий трансформатор. Для создания искры, поджигающей рабочую смесь, требуется высокое напряжение, которое мы и получаем от аккумулятора автомобиля, предварительно превратив постоянный ток аккумулятора в переменный с помощью прерывателя. Нетрудно сообразить, что с точностью до потерь энергии, идущей на нагревание трансформатора, при повышении напряжения уменьшается сила тока, и наоборот. Для сварочных аппаратов требуются понижающие трансформаторы. Для сварки нужны очень сильные токи, и трансформатор сварочного аппарата имеет всего лишь один выходной виток. Вы, наверное, обращали внимание, что сердечник трансформатора изготовляют из тонких листиков стали. Это сделано для того, чтобы не терять энергии при преобразовании напряжения. В листовом материале вихревые токи будут играть меньшую роль, чем в сплошном. Дома вы имеете дело с маленькими трансформаторами. Что же касается мощных трансформаторов, то они представляют собой огромные сооружения. В этих случаях сердечник с обмотками помещен в бак, заполненный охлаждающим маслом. Передача электроэнергии Потребители электроэнергии имеются повсюду. Производит­ся же она в сравнительно немногих местах, близких к источникам топливных и гидроресурсов. Поэтому возникает необходимость передачи электроэнергии на расстояния, достигающие иногда сотен километров. Но передача электроэнергии на большие расстояния связана с заметными потерями. Дело в том, что, протекая по линиям электропередачи, ток нагревает их. В соответствии с законом Джоуля — Ленца, энергия, расходуемая на нагрев проводов ли­нии, определяется формулой Q=I2Rt где R — сопротивление линии. При большой длине линии переда­ча энергии может стать вообще экономически невыгодной. Для уменьшения потерь можно, конечно, идти по пути уменьшения сопротивления R линии посредством увеличения площади попе­речного сечения проводов. Но для уменьшения R, к примеру, в 100 раз нужно увеличить массу провода также в 100 раз. Ясно, что нельзя допустить такого большого расходования дорогостоя­щего цветного металла, не говоря уже о трудностях закрепления тяжелых проводов на высоких мачтах и т. п. Поэтому потери энергии в линии снижают другим путем: уменьшением тока в ли­нии. Например, уменьшение тока в 10 раз уменьшает количество выделившегося в проводниках тепла в 100 раз, т. е. достигается тот же эффект, что и от стократного утяжеления провода. Так как мощность тока пропорциональна произведению силы тока на напряжение, то для сохранения передаваемой мощности нужно повысить напряжение в линии передачи. Причем, чем длиннее линия передачи, тем выгоднее использовать более высо­кое напряжение. Так, например, в высоковольтной линии переда­чи Волжская ГЭС — Москва используют напряжение в 500 кв. Между тем генераторы переменного тока строят на напряжения, не превышающие 16—20 кв., так как бо­лее высокое напряжение потребовало бы принятия более слож­ных специальных мер для изоляции обмоток и других частей генераторов. Поэтому на крупных электростанциях ставят повышающие трансформаторы. Трансформатор увеличивает напряжение в ли­нии во столько же раз, во сколько уменьшает силу тока. Потери мощности при этом невелики. Для непосредственного использования электроэнергии в дви­гателях электропривода станков, в осветительной сети и для дру­гих целей напряжение на концах линии нужно понизить. Это до­стигается с помощью понижающих трансформаторов. Причем обычно понижение напряжения и соответственно увеличение силы тока происходит в несколько этапов. На каждом этапе напряжение становится все меньше, а территория, охватываемая электрической сетью, - все шире. Схема передачи и распределения электроэнергии приведена на рисунке.

Реферат: Трансформаторы и передача энергии на расстояние

Электрические станции ряда областей страны соединены высоковольтными линиями передач, образуя общую электросеть, к которой присоединены потребители. Такое объединение называется энергосистемой. Энергосистема обеспечивает бесперебойность подачи энергии потребителям не зависимо от их месторасположения.


(C) 2009