Научная Петербургская Академия

Разбиения выпуклого многоугольника - (курсовая)

Разбиения выпуклого многоугольника - (курсовая)

Дата добавления: март 2006г.

    “Разбиения выпуклого многоугольника”
    Скращук Дмитрий ( г. Кобрин)

П. 1. Выпуклый многоугольник с n сторонами можно разбить на треугольники диагоналями, которые пересекаются лишь в его вершинах. Вывести формулу для числа таких разбиений.

Определение: назовем правильным разбиением выпуклого n-угольника на треугольники диагоналями, пересекающимися только в вершинах n-угольника.

Пусть P1, P2 , … , Pn–вершины выпуклого n-угольника, Аn- число его правильных разбиений. Рассмотрим диагональ многоугольника PiPn. В каждом правильном разбиени P1Pn принадлежит какому-то треугольнику P1PiPn, где1

Пусть i=2 – одна группа правильных разбиений, которая всегда содержит диагональ P2Pn . Число разбиений, входящих в эту группу совпадает с числом правильных разбиений (n-1) угольника P2P3…Pn, то есть равно Аn-1.

Пусть i=3 – одна группа правильных разбиений, которая всегда содержит диагональ P3P1 и P3Pn. Следовательно, число правильных разбиений, входящих в эту группу, совпадает с числом правильных разбиений (n-2)угольника P3P4…Pn, то есть равно Аn-2. При i=4 среди треугольников разбиение непременно содержит треугольник P1P4Pn. К нему примыкают четырехугольник P1P2P3P4 и (n-3)угольник P4P5 …Pn. Число правильных разбиений четырехугольника равно A4, число правильных разбиений (n-3) угольника равно Аn-3. Следовательно, полное число правильных разбиений, содержащихся в этой группе, равно

Аn-3A4. Группы с i=4, 5, 6, … содержат Аn-4A5, Аn-5A6, … правильных разбиений. При i=n-2 число правильных разбиений в группе совпадает с числом правильных разбиений в группе с i=2, то есть равно Аn-1.

Поскольку А1=А2=0, А3=1, A4=2 и т. к. n і 3, то число правильных разбиений равно: Аn= Аn-1+Аn-2+Аn-3 A4+Аn-4 A5+ … + A 5Аn-4+ A4Аn-3+ Аn-2+ Аn-1. Например:

    A 5= A4+ А3+ A4=5
    A6= A5+ А4+ А4+ A5=14
    A7= A6+ А5+ А4 *А4+А5+ A6 =42
    A8= A7+ А6+А5*А4+ А4*А5+А6+ A7 =132

П. 2. 1. Найдем количество во всех диагоналей правильных разбиениях, которые пересекают внутри только одну диагональ.

Проверяя на частных случаях, пришли к предположению, что количество диагоналей в выпуклых n-угольниках равно произведению количества разбиений на (n-3) Докажем предположение, что P1n= Аn(n-3)

Каждый n-угольник можно разбить на (n-2) треугольника, из которых можно сложить (n-3) четырехугольника, причем каждый четырехугольник будет иметь диагональ. Но в четырехугольнике можно провести 2 диагонали, значит в

    (n-3) четырехугольниках можно провести (n-3)

дополнительные диагонали. Значит, в каждом правильном разбиении можно провести (n-3) диагонали удовлетворяющих условию задачи.

П. 2. 2. Найдем количество во всех диагоналей правильных всех разбиениях, которые пересекают внутри только две диагонали.

Проверяя на частных случаях, пришли к предположению, что количество диагоналей в выпуклых n-угольниках равно произведению количества разбиений на (n-4), где n? 5

    Докажем предположение, что P2n=(n-4)Аn , где n ? 5.

n-угольник можно разбить на (n-2) треугольников из которых можно сложить (n-4) пятиугольника, в котором будут содержаться две непересекающиеся диагонали. Значит, найдется третья диагональ, которая пересекает две другие. Так как имеется (n-4) пятиугольника, значит, существует (n-4) дополнительные диагонали удовлетворяющих условию задачи.

П. 2. 3. Разбиение n-угольника, в котором дополнительные диагонали пересекают главные k раз.

Определение 1: Главными диагоналями выпуклого n-угольника называются диагонали, которые разбивают его на треугольники, пересекаясь при этом только в вершинах n-угольника.

    Замечание: их существует (n-3).

Определение 2: Дополнительными диагоналями выпуклого n-угольника называются диагонали, которые в данном разбиении пересекают главные диагонали.

    Замечание: их существует менее (n-3).
    I. Определение k:
    Будем выделять из выпуклого n-угольника

следующим образом: соединяем диагоналями через одну вершину данного n-угольника, причем выделением считается получение последующего a-угольника из предыдущего,

используя не менее двух диагоналей. Выделение ведется до тех пор, пока не получится четырехугольник или треугольник (r = 4 или r = 3 (r–остаточный коэффициент)). Назовем каждое такое выделение циклом и введем величину, которая будет “считать” их (d). Для каждого d существует 2d+1 многоугольников, первый многоугольник для данного d , будет (2d+1+1)-угольником. Для первой половины (для данного d) многоугольников r = 3, для второй - r = 4. Последним многоугольником, для которого r = 3 будет (3Ч2d )-угольником. Окончательно получаем: r = 3, если nО[2d+1+1; 3Ч2d], в противном случае r = 4. За каждый цикл, если проводить дополнительные диагонали, будет добавляться по 2 пересечения и через d циклов число пересечений достигнет максимума в полученном данным способом разбиении. Обозначим это число буквой k.

Итак, за 1 цикл 2 пересечения, за 2 цикла – 4, за 3 –6, очевидна арифметическая прогрессия с разностью 2, a1=2 и количество членов равным d; значит k=2+2(d-1)=2d–только в том случае, если конечной фигурой окажется треугольник. В противном случае k=2d+1, так как четырехугольник имеет собственную диагональ. Рассчитаем d: т. к. : d=1, n [22+1; 23]

    d=2, n [23+1; 24]
    d=3, n [24+1; 25]
    …

Зависимость d от n- логарифмическая по основанию 2; становится очевидным равенство: d=[log2(n-1)]-1. Выразим k через n:

k=2([log2 (n-1)]-1), если nО[2[log2(n-1)]+1; 3Ч2[log2(n-1)]-1] или

k=2([log2(n-1)]-1)+1= 2[log2 (n-1)]-1, если nП[2[log2(n-1)]+1; 3Ч2[log2(n-1)]-1] Так как k – максимум пересечений, то уместны неравенства:

k? 2([log2 (n-1)]-1), если nО[2[log2(n-1)]+1; 3Ч2[log2(n-1)]-1] или (*)

k? 2[log2 (n-1)]-1, если nП[2[log2(n-1)]+1; 3Ч2[log2(n-1)]-1] II. Найдем число дополнительных диагоналей (m), которые пересекают главные не более k раз.

выбрали Выделим в данном выпуклом n-угольнике (k+3)-угольник (k+3)-угольник (если это возможно), зн.

    уже ‘использовано’ (n+3)-2=k+1 всех
    отбросили существующих треугольников
    1 треугольник n-угольника (всего их (n-2)), потом
    добавили другой ‘отбросим’ крайний треугольник и
    треугольник и ‘добавим’ к получившейся фигуре еще
    опять получили один, имеющий общую с ней сторону,
    (k+3)-угольник ‘не использованный’ треугольник, тогда
    останется (k+2) не использованных

треугольника, и так далее до тех пор, пока не ‘используем’ все (n-2)треугольника. Очевидна арифметическая прогрессия с разностью 1, am=n-2 и c количеством членов равным m. Получим: n-2=k+1+(m-1)n-2=k+mm=n-k-2уm=n-(k+2)Значит, в n-угольник можно вписать (k+3)угольник (n-(k+2))раз, то есть существуют

такие (n-(k+2)) дополнительные диагонали, которые пересекут k главных диагоналей.

    Окончательно получаем: Pkn=(n- (k+2))Аn , где (*).



(C) 2009