Научная Петербургская Академия

Реферат: Параметрические загрязнения окружающей среды

Реферат: Параметрические загрязнения окружающей среды

Министерство образования Российской Федерации Южно – Уральский Государственный университет Факультет Сервиса и легкой промышленности ПАРАМЕТРИЧЕСКИЕ ЗАГРЯЗНЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ Выполнила: Бернштейн М.И. группа С – 282 Проверил: Антоненко В.В. Челябинск 2003 ОГЛАВЛЕНИЕ Введение_________________________________________________________ 3 Параметрические (физические) загрязнения_____________________ 4 1.1 Шум_________________________________________________________ 4 1.2 Вибрация__________________________________________________ 12 1.3 Электромагнитные излучения______________________________ 13 1.4 Ионизирующие загрязнения_______________________________ 16 1.5 Тепловые загрязнения_____________________________________ 20 1.6 Световые загрязнения_____________________________________ 20 Вывод___________________________________________________________ 21 Список используемой литературы_______________________________ 22 ВВЕДЕНИЕ Загрязнением в узком смысле считается привнесение в какую-либо среду новых, не характерных для нее физических, химических и биологических агентов или превышение естественного уровня этих агентов в среде. Так как объектом загрязнения всегда является биогеоценоз (экосистема), наличие вредных веществ означает применение режимов воздействия экологических факторов, что приводит к нарушению в экологической нише (или звена в пищевой цепи). Это в свою очередь приводит к нарушению обмену веществ, снижению интенсивности ассимиляции продуцентов, а значит, и продуктивности биоценоза в целом. Загрязнения можно классифицировать следующим образом: ¡ Ингредиентное (химическое) загрязнение, представляющее собой совокупность веществ, чуждым естественным биогеоценозом; ¡ Параметрическое (физическое) загрязнение среды, связано с изменением качественных параметров окружающей среды: шумовых, радиационных, световых, температурных, электромагнитных и т. п.; ¡ Биологическое загрязнение, заключающееся в воздействии на состав и структуру популяций и отдельных ее представителей – биологических агентов. ПАРАМЕТРИЧЕСКИЕ (ФИЗИЧЕСКИЕ) ЗАГРЯЗНЕНИЯ 1.1 ШУМ Шумовое загрязнение отрицательно воздействует на организм человека, вызывая: - повышенную утомляемость, - снижение умственной активности, - понижение производительности труда, - развитие сердечно-сосудистых заболеваний - нервных заболеваний. По мнению ученых, шум сокращает продолжительность жизни человека в больших городах на 8 – 12 лет. В древнем Китае существовала даже звуковая казнь за богохульство. Физиолого-биохимическая адаптация человека к шуму не возможна. Сильный шум является для человека физическим наркотиком. Поэтому часть людей и прежде всего молодежь, увлекаясь современной музыкой с большой интенсивностью ее звучания, подвергает свое здоровье опасности в следствии воздействия на организм физического наркотика. Женщины менее устойчивы к сильному шуму, который быстрее приводит их к неврастении. А слабые бытовые шумы в доме, обусловленные плохой звукоизоляцией квартир, разрушительнее действуют на нервную систему мужчин. В транспортном комплексе источниками шума являются процессы механического, аэродинамического, электромагнитного, гидродинамического происхождения, прежде всего шум от вибрации корпусных деталей, систем газообмена, охлаждения двигателей, агрегатов трансмиссии, а так же аэродинамический шум и шум шин транспортных средств, строительно-дорожных машин, технологического оборудования. Под шумом объекта транспорта понимается акустическое излучение, производимое им при работе. Транспортное средство как источник акустического излучения характеризуют значением излучаемой акустической мощности, ее спектром и диаграммой направленности излучения. Звук – механические колебания частиц упругой среды, образующиеся под воздействием какой-либо возмущающей силы. Акустические колебания в диапазоне 16 – 20 000 Гц, воспринемаемые слуховым аппаратом человека, называются звуковыми, а пространство их распределения – звуковым полем. Колебания ниже 16 Гц – инфразвуковые, а выше 20 000 Гц – ультразвуковые. Известно, что звуковое давление Р в звуковой волне равно разности давлений среды в присутствии и отсутствии волны. Уровнем шума называют двадцатикратный логарифм отношения звукового давления к пороговому значению: Р = 2 . 10 -5 Н\м2. Если предположить, что источник шума (двигатель) находится в точке О (рис. 1) и излучает шум в окружающее пространство, то, выделив полусферу S радиуса r и единичную площадку А на ней, можно определить, что сила звука I – количество звуковой энергии, прошедшее через единичную площадку, перпендикулярную радиусу r, в единицу времени. Реферат: Параметрические загрязнения окружающей среды Сила звука пропорциональна квадрату звукового давления и ее выражают в Вт\м 2 . Поэтому уровень шума иногда определяют как десятичный логарифм отношения силы звука к пороговому значению: I0 = 10-12 Вт\м2 . В результате уровень шума (дБ) определяется по формуле

рис.1 Прохождение звука через единичную площадку

L = 10.lg(I\Io)=20.lg(P\Po) (1) Акустическая мощность W (Вт) объекта – общее количество энергии, излучаемой транспортным средством в окружающее пространство в виде звука и прошедшей через поверхность полусферы радиуса r в единицу времени; вычисляется по формуле W = 100.1Lw -12 (2) Уровни акустической мощности называют величину Lw = 10lg(W/W0), (3) где W0 = 10-12 Вт . Уровень мощности связан с уровнем шума выражением Lw=L+20lgr+10lgΩ-10lgФ, (4) где Ω – телесный угол, в котором осуществляется излучение с учетом допущения о том, что акустическое излучение объекта происходит из центра О полусферы, 10lgΩ ≈ 8, Ф – фактор направленности излучения, представляющий собой величину Pr2/Pср.2 , т.е. отношение квадрата звукового давления, в произвольной точке полусферы радиуса r к квадрату звукового давления, осредненному по всем точкам измерения на поверхности S. Обычно шум измеряют в точке L с помощью шумомера, при использование линейной частотой характеристики прибора по шкале А, учитывающей особенности восприятия человеком звуков различной частоты. Орган слуха человека различает не разность, а кратность изменения абсолютных значений звуковых давлений. Поэтому шум оценивают не абсолютной величиной – звуковым давлением, а его уровнем, то есть отношением создаваемого звукового давления к пороговому давлению (по формуле 1). В работающем двигателе транспортного средства причина возникновения акустического излучения является осуществление рабочего процесса, связанного с подводом теплоты Q1 к рабочему телу в цилиндре. Для сравнения качества конструкций ДВС, заключающегося в способности преобразовать часть тепловой энергии Q1 в энергию звукового излучения, служит коэффициент акустического излучения двигателя n ak = W/ Q1 → min. (5) Если у одного из двигателей этот коэффициент выше, то его конструкция акустически менее совершенна. Современные поршневые ДВС, используемые в автомобилях и дорожно-строительных машинах, при работе на номинальном режиме излучают 2-3 Вт акустической мощности. В точках пространства на расстояние 1м вокруг поверхности работающего двигателя возникают уровни шума 104–120 дБ.

рис.2 Шум дизеля в точке пространства около двигателя на расстояние 1м от его боковой поверхности.

1–режим частичных нагрузок

2–режим холостого хода

Реферат: Параметрические загрязнения окружающей среды Важной характеристикой шума является его спектр. Орган слуха человека неодинаково реагирует на звуки с одной амплитудой, но разной частоты. Спектр шума объекта показывает распределение энергии излучения по частотному диапазону. В них присутствуют дискретные составляющие, кратные частоте вращения, числу цилиндров двигателя, и сплошная область (рис.2). Октавные спектры звуковой мощности служат основной характеристикой шума машины. Причинами возникновения звука являются: взаимодействие колеблющегося тела со средой; «быстрое» выделение энергии в конечном объеме среды; подведение (отток) конечного количества вещества в определенную область среды; обтекание потоком вещества твердого тела. Акустическое излучение является следствием возмущений колебательной системы, распространение в ней колебаний и последующего процесса излучения энергии колебаний в окружающее пространство. Акустическое излучение объектов транспорта концентрируется преимущественно в диапазоне 20-8 000 Гц. Рассмотрим это явление на примере поршневого ДВС. На такте впуска из области перед горловиной впускного патрубка (рис. 3) будет происходить отток вещества.

рис. 3 Схема конструкции двигателя и возникновения акустического излучения

Реферат: Параметрические загрязнения окружающей среды Движущийся по впускному тракту свежий заряд будет взаимодействовать со стенками, впускным клапаном и другими элементами конструкции. Возникает акустическое излучение, которое называют шумом впуска. Излучаемая при этом акустическая мощность обозначается WВП. При сжатии, сгорании и расширении происходит деформация стенок камеры сгорания, что приводит к колебаниям наружных стенок двигателя. Энергия колебаний стенок в виде звука WДЕФ излучается в окружающее пространство. Помимо того, подвод теплоты к рабочему телу в цилиндре двигателя так же приводит к появлению акустического излучения при сгорании WСГ. Опрокидывающий момент будет вызывать колебание двигателя на подвеске, энергия которых в виде звука, частично будет излучаться в окружающее пространство. В механизмах двигателя при работе могут возникать удары сопрягаемых деталей (клапан-седло), что приводит к шуму WУД. Работа агрегатов, размещаемых на двигателе (вентилятор, топливоподающий насос и др.), приводят так же к появлению шума WАГ. При выпуске происходит приток вещества в области, прилегающей к выпускному патрубку; здесь выделится так же какое-то количество энергии. Это приводит к возникновению шума выпуска WВЫП. Если суммировать перечисленные составляющие акустической мощности, то получим уравнение акустического баланса двигателя «по рабочему циклу» (Вт): WД = WВП + WВЫП + WДЕФ + WП + WУД + WАГ. (6) Акустическое излучение двигателя осуществляется горловинами впускного и выпускного тактов в примеси трактов и всей поверхностью. Причем элементы поверхности двигателя излучают разные количества акустической энергии. Уравнение акустического баланса двигателя «по поверхности» (Вт) имеет вид: WД = WВП + WВЫП +∑ Wi, (7) где Wi - акустическое излучение, осуществляемое i-м элементом поверхности двигателя; n – число элементов, на которую разбита вся поверхность объекта. Удельная акустическая мощность, излучаемая поверхностью современного двигателя, составляет 90-115 дБ/м2 . Акустическое излучение участков поверхности двигателя, горловин трактов впуска и выпуска иногда отождествляют с действием простейших излучателей нулевого и первого порядка. Отсюда ­ третья разновидность акустического баланса двигателя «по излучателям» (Вт): WД = ∑ W0 +∑ Wi , (8) где W0 – излучение нулевого порядка; k – число излучателей нулевого порядка; l – число излучателей первого порядка. Составление акустического баланса двигателя или любого другого объекта транспорта по формулам (6-8) дает возможность определит наиболее существенные составляющие шума, указать причины возникновения, и изучит процесс формирования. найти наиболее рациональные пути его подавления. 1.2 ВИБРАЦИЯ Вибрация ­­– движение точки или механической системы под воздействием какой-либо внешней силы, при котором происходят колебания характеризующих ее скалярных величин (виброперемещение, виброскорость, виброускорение). Колебания в механических системах передаются от дорожной поверхности как через элементы конструкции на находящихся в салоне водителя и пассажиров, а так же через грунт, воздействуя на биоту и инженерные сооружения. Вибрация может измеряться с помощью абсолютных и относительных величин. Абсолютные параметры – виброперемещение, виброскорость и виброускорение. Общие и локальные вибрации оцениваются средними квадратичными и корректированными значениями (вертикальными, продольными, поперечными) виброскорости (м/с) и виброускорение (м/с2). Основной относительной величиной является уровень виброскорости LV (дБ), который определяется по формуле: LV = 20lgv/v0, (9) где v0 – пороговое значение виброскорости, и v – среднеквадратичное значение виброскорости, м/с. Первая производная по скорости – виброускорение формирует ограничения на конструкцию транспортного средства, так как при его движении генерируются частоты вынужденных колебаний до 20 Гц, при которых входят в резонанс с частотой собственных колебаний отдельные внутренние органы человека. Основные источники вибрации – технологическое оборудование ударного действия (молоты, прессы, грохоты), энергетические установки (насосы, компрессоры, двигатели), транспортные средства. Вибрации распространяются по грунту и достигают фундаментов общественных и жилых зданий, часто вызывая и звуковые колебания, которые разрушают конструкции, которые разрушают конструкции и сооружения. Они затухают в грунте с темпом примерно 1дБ/м и на расстоянии 50- 60 м от транспортной магистрали уже не ощущаются. Ощутимое воздействие вибрации при работе оборудования кузнечно-прессовых цехов распространяются на 150-200 м. 1.3 ЭЛЕКТРОМАГНИТНЫЕ ИЗЛУЧЕНИЯ Устройства, генерирующие, передающие и использующие электрическую энергию в транспортном комплексе, создают в окружающей среде электромагнитные поля (ЭМП). ЭМП распространяется в окружающей среде со скоростью, приближающейся к скорости света, и характеризуется напряженностью электрической и магнитной составляющих поля. Измерителями электромагнитного излучения являются: ¡ Напряженность электрической составляющей (В/м). Служит для оценки интенсивности ЭМП в диапазоне частот 30 кГц – 300 МГц; ¡ Плотность потока энергии (Вт/м2) – количество энергии, переносимой магнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны. Служит для оценки интенсивности ЭМП в диапазоне частот 300 МГц – 300 ГГц. Для оценки биологического воздействия ЭМП различают зону индукции (ближнюю) и зону излучения (дальнюю). Ближняя расположена на расстоянии от источника, равном 1/6 от длины волны. Здесь магнитная составляющая напряженности поля выражена слабо, поэтому ее действие на организм не значительно. В дальнейшей зоне проявляется эффект обеих составляющих поля. Основным источником низкочастотных электромагнитных колебаний являются воздушные линии электропередач, системы транспортных средств (электрооборудования, зажигание, управление, охранной сигнализации). ЭМП высокой частоты используются в металлургии для плавления метала в индукционных печах, в машиностроении для термообработки. Электротранспорт является источником значительных электромагнитных колебаний низкой и высокой частоты. Электромагнитную УВЧ – и СВЧ – энергию применяют в радиовещании, телевидении и других областях. В последнее время уделяется большое внимание искусственным ЭМП. О биологическом влиянии ЭМП опубликовано много материалов. Наблюдаемые при этом эффекты до сих пор не ясны, поэтому тема остается актуальной уже третье десятилетие. Многие компании из 14-ти стран мира постоянно проводят исследования на живых организмах, но до сих пор не могут прийти к единому мнению. Основная частота в контактной сети 50 Гц и для этой частоты проведено большое количество опытов на животных. Данные варьируют от опыта к опыту и бывают как отрицательные (биологическое изменение крови у крыс) так и положительные (увеличение выживаемости при спонтанно развивающейся лейкемии у мышей). ЭМП вызывают у животных колебания шерсти на спине (около 1мм) и значительно большее колебания усов. Эти факты способны вызвать беспокойство, потерю ориентации, нервное напряжение и развитие ряда заболеваний. Очень мало известно о действиях слабых ЭМП. Не существует научно обоснованных пределов воздействия ЭМП для распространенных в быту приборов и аппаратов: компьютеров, телевизоров и т.п. По полученным данным можно предположить, что длительное воздействие слабых ЭМП заметно скажется лишь в 4-ом – 10-ом поколении. Однако известно, что у работающих за компьютерами до шести часов в сутки, заболевание органов зрения, поражение ЦНС и сердечно-сосудистой системы происходит в пять раз части, чем в контрольных группах. Не стоит так же слишком часто пользоваться радио- и электроприборами, так как из-за воздействия ЭМИ опасность заболеть раком крови возрастает на 20-40%. 1.4 ИОНИЗИРУЮЩИЕ ЗАГРЯЗНЕНИЯ Ионизирующее излучение – любое излучение, взаимодействие которого со средой приводит к образования электрических зарядов разных знаков (ионов, нуклидов). Радиоактивность – самопроизвольное превращение неустойчивого нуклида в нуклид, сопровождающееся испусканием ионизирующих излучений. Основными видами ионизирующих излучений являются: ¡ αчастицы: ядра гелия, несущие два элементарных положительных заряда; испускаются при распаде некоторых элементов с большим массовым числом (радий, торий, уран и т. д. ); длина пробега в воздухе 2,5 – 9см, в биологических тканях – до 0,1 мкм. Представляют опасность при попадании радионуклидов внутрь организмов. ¡ βчастицы: ядерные частицы, близкие по физической природе к электронам; возникают при радиоактивном распаде и сразу же излучаются. Максимальный пробег в воздухе – несколько метров, в тканях – несколько миллиметров. Опасны при попадании радионуклидов на кожные покровы и внутрь организма. Все радионуклиды, находящиеся в таблице Менделеева до свинца, обладают только β – распадом, а радионуклиды, которые тяжелее свинца имеют как α ­–, так и β – распад ¡ γ – кванты: самые коротковолновые электромагнитные излучения (до 10-9 см), которые образуются в ходе ядерных реакций и при распаде осколков деления; близки к рентгеновским лучам, но у γ – квантов короче длина волны и они несут большой энергетический заряд. Пробег в атмосфере измеряется сотнями метров, свободно проникает через преграды. Воздействие ионизирующего излучения приводит к повреждению клеток человеческого организма двумя способами. Один из них наносит генетические повреждения, которые изменяют гены и хромосомы. Другой способ вызывает соматические повреждения: ожоги, выкидыши, гладкие катаракты, раковые заболевания костей, щитовидной и молочной желез, легких. Излучаемая радиоактивными веществами энергия поглощается окружающей средой, вызывая ионизацию атомов и молекул вещества, в результате чего молекулы и клетки тканей разрушаются. Биологический эффект ионизирующего излучения зависит от суммарной дозы, продолжительность воздействия, виды излучений, размеров излучаемой поверхности и индивидуальных особенностей организма. Таблица 1 Возможные последствия для человека различных доз облучения всего организма за короткий промежуток времени

Доза (миллирентген)

Последствия

12
0-50Нет достоверных симптомов
50-200Уменьшение количества белых кровяных клеток, тошнота, рвота. Около 10% погибают в течение нескольких месяцев при уровне 200 миллирентген.
200-400Потеря кровяных клеток, высокая температура, кровотечение, выпадение волос, тошнота, рвота, диарея, усталость, кожные нарывы. Около 20% погибают в течение нескольких месяцев.
400-500Такие же симптомы, как и при уровне 200-400 миллирентген, но в более тяжелом проявлении, рост числа инфекционных заболеваний из-за недостатка белых кровяных клеток. Уровень смертности достигает 50% при уровне излучения 450 миллирентген.
500-1000Тяжелое расстройство желудочно-кишечного тракта, острая сердечно-сосудистая не достаточность, поражение ЦНС. При дозе превышающей 700 миллирентген гибель в течение нескольких недель.
10 000Смерть в течение нескольких часов.
100 000Смерть в течение нескольких минут.
Природные и строительные материалы являются источником радиоактивного излучения: из грунта выделяются радиоактивные газы, в частности радон. Это излучении, фиксируемое в конкретном месте, называют фоновым ионизирующим излучением. Оно складывается из : - природного естественного радиоактивного фона, вызванного присутствием в биосфере радионуклидов; - технически повышенного естественного фона, вызванного деятельностью человека; - искусственных источников излучения (радиоизотопные приборы, гамма – дефектоскопы и др.). Источниками сверхфонового радиоактивного загрязнения являются: ¡ Долгоживущие радиоактивные изотопы – продукты испытаний ядерного оружия; ¡ Плановые и аварийные выбросы радиоактивных веществ в окружающую среду от предприятий атомной промышленности и транспортных средств с атомными и энергоустановками; ¡ Твердые и жидкие радиоактивные отходы Средние мощности фонового γ – излучения на планете составляет 1290 Кл/(кг.ч). Но на отдельных территориях она может доходить до 59 340 Кл/(кг.ч). Значимым для здоровья людей уровень эквивалентной дозы составляет 0,25 Зв. Но много зависит от интенсивности излучения и времени экспозиции. Последствия однократного облучения: до 0,5 Зв – отсутствуют клинические симптомы; 0,5 –1,0 Зв – незначительные недомогания; 1 – 2 Зв – легкая степень лучевой болезни; 2 – 4 Зв – тяжелая степень лучевой болезни; более 6,0 Зв – летальный исход. На территориях, подверженных радиоактивному загрязнению, при движении автомобилей, происходит осаждение на транспортных средствах радиоактивной пыли. В результате, в замкнутых системах водообеспечения транспортных предприятий вода после многократного (более 40 раз) использования по данным Липецкого технического университета получает уровень радиоактивности, существенно превышающий установленные нормативы. Поэтому транспортные средства и объекты инфраструктуры, а так же природные строительные материалы могут быть источниками радиоактивного излучения. 1.5 ТЕПЛОВЫЕ ЗАГРЯЗНЕНИЯ Тепловое загрязнение является результатом повышения температуры среды, возникающее пи отводе воды от систем охлаждения в водные объекты, при выбросе потоков дымовых газов или воздуха. Тепловое загрязнение водоемов приводит к последовательной схеме видового состава биоценоза водорослей. Известны факты, когда сброс теплых вод создавал тепловой барьер для рыб на путях к нерестилищам. 1.6 СВЕТОВЫЕ ЗАГРЯЗНЕНИЯ Световое загрязнение создается при нарушении естественного режима освещенности в результате воздействия искусственных источников света приводит к аномалиям в жизни животных и растений. ВЫВОД В этом реферате я попыталась описать основные виды параметрических (физических) загрязнений окружающей среды. Параметрическим загрязнением называют загрязнение, которое связано с изменением физических параметров среды: шумовых, радиационных, световых, температурных, электромагнитных и т.д. Параметрические загрязнения наносят большой вред здоровью человека. Они могут привести к: росту числа инфекционных заболеваний, повышению температуры тела человека, выпадению волос, кровотечениям, диареи, кожным нарывам, острой сердечно-сосудистой недостаточности, поражению центральной и нервной системы и даже к летальному исходу. Необходимо помнить об этом и применять более серьезные меры по уменьшению воздействия параметрических загрязнений. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 1. Луканин В.Н, «Промышленно транспортная экология», М.: 2001 2. Гарин В.М., «Экология для технических вузов», Ростов на Дону: 2001 3. Мандринина, «Загрязнение и охрана окружающей среды», Новосибирск: 2002 4. Юсорин Ю.С., «Промышленность и окружающая среда», М.:2002


(C) 2009